Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Clin Invest ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2237068

ABSTRACT

The emergence of the novel henipavirus, Langya virus, received global attention earlier this month after the virus sickened over three dozen people in China. There is heightened concern henipaviruses as respiratory pathogens could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year prior to challenge with a uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest rVSV-ΔG-NiVBG elicits long-lasting immunity.

2.
Cell Rep ; 39(7): 110812, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1803708

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing monoclonal antibodies (mAbs) can reduce the risk of hospitalization from coronavirus disease 2019 (COVID-19) when administered early. However, SARS-CoV-2 variants of concern (VOCs) have negatively affected therapeutic use of some authorized mAbs. Using a high-throughput B cell screening pipeline, we isolated LY-CoV1404 (bebtelovimab), a highly potent SARS-CoV-2 spike glycoprotein receptor binding domain (RBD)-specific antibody. LY-CoV1404 potently neutralizes authentic SARS-CoV-2, B.1.1.7, B.1.351, and B.1.617.2. In pseudovirus neutralization studies, LY-CoV1404 potently neutralizes variants, including B.1.1.7, B.1.351, B.1.617.2, B.1.427/B.1.429, P.1, B.1.526, B.1.1.529, and the BA.2 subvariant. Structural analysis reveals that the contact residues of the LY-CoV1404 epitope are highly conserved, except for N439 and N501. The binding and neutralizing activity of LY-CoV1404 is unaffected by the most common mutations at these positions (N439K and N501Y). The broad and potent neutralization activity and the relatively conserved epitope suggest that LY-CoV1404 has the potential to be an effective therapeutic agent to treat all known variants.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral , Epitopes , Humans
3.
Proc Natl Acad Sci U S A ; 119(12): e2200065119, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1740535

ABSTRACT

SignificanceConcern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge.


Subject(s)
Henipavirus Infections/veterinary , Nipah Virus/immunology , Primate Diseases/prevention & control , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Biomarkers , Genetic Vectors , Kaplan-Meier Estimate , Neutralization Tests , Outcome Assessment, Health Care , Primate Diseases/diagnosis , Primate Diseases/mortality , Primate Diseases/virology , Vaccination , Viral Load
4.
Vaccines (Basel) ; 9(11)2021 Nov 17.
Article in English | MEDLINE | ID: covidwho-1524224

ABSTRACT

Stable, effective, easy-to-manufacture vaccines are critical to stopping the COVID-19 pandemic resulting from the coronavirus SARS-CoV-2. We constructed a vaccine candidate CoV-RBD121-NP, which is comprised of the SARS-CoV-2 receptor-binding domain (RBD) of the spike glycoprotein (S) fused to a human IgG1 Fc domain (CoV-RBD121) and conjugated to a modified tobacco mosaic virus (TMV) nanoparticle. In vitro, CoV-RBD121 bound to the host virus receptor ACE2 and to the monoclonal antibody CR3022, a neutralizing antibody that blocks S binding to ACE2. The CoV-RBD121-NP vaccine candidate retained key SARS-CoV-2 spike protein epitopes, had consistent manufacturing release properties of safety, identity, and strength, and displayed stable potency when stored for 12 months at 2-8 °C or 22-28 °C. Immunogenicity studies revealed strong antibody responses in C57BL/6 mice with non-adjuvanted or adjuvanted (7909 CpG) formulations. The non-adjuvanted vaccine induced a balanced Th1/Th2 response and antibodies that recognized both the S1 domain and full S protein from SARS2-CoV-2, whereas the adjuvanted vaccine induced a Th1-biased response. Both adjuvanted and non-adjuvanted vaccines induced virus neutralizing titers as measured by three different assays. Collectively, these data showed the production of a stable candidate vaccine for COVID-19 through the association of the SARS-CoV-2 RBD with the TMV-like nanoparticle.

5.
Nat Commun ; 12(1): 1891, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1387333

ABSTRACT

Monoclonal antibodies (mAbs) and remdesivir, a small-molecule antiviral, are promising monotherapies for many viruses, including members of the genera Marburgvirus and Ebolavirus (family Filoviridae), and more recently, SARS-CoV-2. One of the major challenges of acute viral infections is the treatment of advanced disease. Thus, extending the window of therapeutic intervention is critical. Here, we explore the benefit of combination therapy with a mAb and remdesivir in a non-human primate model of Marburg virus (MARV) disease. While rhesus monkeys are protected against lethal infection when treatment with either a human mAb (MR186-YTE; 100%), or remdesivir (80%), is initiated 5 days post-inoculation (dpi) with MARV, no animals survive when either treatment is initiated alone beginning 6 dpi. However, by combining MR186-YTE with remdesivir beginning 6 dpi, significant protection (80%) is achieved, thereby extending the therapeutic window. These results suggest value in exploring combination therapy in patients presenting with advanced filovirus disease.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/therapeutic use , Marburg Virus Disease/drug therapy , Marburgvirus/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Animals , Disease Models, Animal , Drug Therapy, Combination , Macaca mulatta , Marburg Virus Disease/prevention & control , Viral Load/drug effects
6.
Sci Transl Med ; 13(593)2021 05 12.
Article in English | MEDLINE | ID: covidwho-1255516

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral/immunology , COVID-19 , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: covidwho-1127220

ABSTRACT

The COVID-19 pandemic has reemphasized the need to identify safe and scalable therapeutics to slow or reverse symptoms of disease caused by newly emerging and reemerging viral pathogens. Recent clinical successes of monoclonal antibodies (mAbs) in therapy for viral infections demonstrate that mAbs offer a solution for these emerging biothreats. We have explored this with respect to Junin virus (JUNV), an arenavirus classified as a category A high-priority agent and the causative agent of Argentine hemorrhagic fever (AHF). There are currently no Food and Drug Administration-approved drugs available for preventing or treating AHF, although immune plasma from convalescent patients is used routinely to treat active infections. However, immune plasma is severely limited in quantity, highly variable in quality, and poses significant safety risks including the transmission of transfusion-borne diseases. mAbs offer a highly specific and consistently potent alternative to immune plasma that can be manufactured at large scale. We previously described a chimeric mAb, cJ199, that provided protection in a guinea pig model of AHF. To adapt this mAb to a format more suitable for clinical use, we humanized the mAb (hu199) and evaluated it in a cynomolgus monkey model of AHF with two JUNV isolates, Romero and Espindola. While untreated control animals experienced 100% lethality, all animals treated with hu199 at 6 d postinoculation (dpi) survived, and 50% of animals treated at 8 dpi survived. mAbs like hu199 may offer a safer, scalable, and more reproducible alternative to immune plasma for rare viral diseases that have epidemic potential.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Viral/pharmacology , Hemorrhagic Fever, American/prevention & control , Junin virus/metabolism , Animals , Disease Models, Animal , Female , Guinea Pigs , Hemorrhagic Fever, American/blood , Humans , Macaca fascicularis
8.
Cell Rep ; 34(10): 108837, 2021 03 09.
Article in English | MEDLINE | ID: covidwho-1095904

ABSTRACT

Passive transfer of convalescent plasma or serum is a time-honored strategy for treating infectious diseases. Human convalescent plasma containing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently being used to treat patients with coronavirus disease 2019 where clinical efficacy trials are ongoing. Here, we assess therapeutic passive transfer in groups of SARS-CoV-2-infected African green monkeys with convalescent sera containing either high or low anti-SARS-CoV-2 neutralizing antibody titers. Differences in viral load and pathology are minimal between monkeys that receive the lower titer convalescent sera and untreated controls. However, lower levels of SARS-CoV-2 in respiratory compartments, reduced severity of virus-associated lung pathology, and reductions in coagulopathy and inflammatory processes are observed in monkeys that receive high titer sera versus untreated controls. Our data indicate that convalescent plasma therapy in humans may be an effective strategy provided that donor sera contain high anti-SARS-CoV-2 neutralizing titers given in early stages of the disease.


Subject(s)
COVID-19/therapy , COVID-19/veterinary , Primate Diseases/therapy , Primate Diseases/virology , SARS-CoV-2/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops/immunology , Female , Immunization, Passive/methods , Immunization, Passive/veterinary , Male , Primate Diseases/immunology , Primates/immunology , Viral Load , COVID-19 Serotherapy
9.
Nat Immunol ; 22(1): 86-98, 2021 01.
Article in English | MEDLINE | ID: covidwho-1065906

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen vaccines and treatments. We show that African green monkeys (AGMs) support robust SARS-CoV-2 replication and develop pronounced respiratory disease, which may more accurately reflect human COVID-19 cases than other nonhuman primate species. SARS-CoV-2 was detected in mucosal samples, including rectal swabs, as late as 15 days after exposure. Marked inflammation and coagulopathy in blood and tissues were prominent features. Transcriptome analysis demonstrated stimulation of interferon and interleukin-6 pathways in bronchoalveolar lavage samples and repression of natural killer cell- and T cell-associated transcripts in peripheral blood. Despite a slight waning in antibody titers after primary challenge, enhanced antibody and cellular responses contributed to rapid clearance after re-challenge with an identical strain. These data support the utility of AGM for studying COVID-19 pathogenesis and testing medical countermeasures.


Subject(s)
COVID-19/immunology , Disease Models, Animal , Reinfection/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Animals , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Epidemics/prevention & control , Gene Expression/genetics , Gene Expression/immunology , Gene Expression Profiling , Humans , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Reinfection/virology , SARS-CoV-2/physiology , T-Lymphocytes/metabolism , T-Lymphocytes/virology
10.
bioRxiv ; 2020 Oct 09.
Article in English | MEDLINE | ID: covidwho-835246

ABSTRACT

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. ONE SENTENCE SUMMARY: LY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

11.
Virol J ; 17(1): 125, 2020 08 18.
Article in English | MEDLINE | ID: covidwho-719595

ABSTRACT

We recently reported the development of the first African green monkey (AGM) model for COVID-19 based on a combined liquid intranasal (i.n.) and intratracheal (i.t.) exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we followed up on this work by assessing an i.n. particle only route of exposure using the LMA mucosal atomization device (MAD). Six AGMs were infected with SARS-CoV-2; three animals were euthanized near the peak stage of virus replication (day 5) and three animals were euthanized during the early convalescence period (day 34). All six AGMs supported robust SARS-CoV-2 replication and developed respiratory disease. Evidence of coagulation dysfunction as noted by a transient increases in aPTT and circulating levels of fibrinogen was observed in all AGMs. The level of SARS-CoV-2 replication and lung pathology was not quite as pronounced as previously reported with AGMs exposed by the combined i.n. and i.t. routes; however, SARS-CoV-2 RNA was detected in nasal swabs of some animals as late as day 15 and rectal swabs as late as day 28 after virus challenge. Of particular importance to this study, all three AGMs that were followed until the early convalescence stage of COVID-19 showed substantial lung pathology at necropsy as evidenced by multifocal chronic interstitial pneumonia and increased collagen deposition in alveolar walls despite the absence of detectable SARS-CoV-2 in any of the lungs of these animals. These findings are consistent with human COVID-19 further demonstrating that the AGM faithfully reproduces the human condition.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Animals , Betacoronavirus/immunology , COVID-19 , Chlorocebus aethiops , Convalescence , Coronavirus Infections/blood , Disease Models, Animal , Female , Lung Injury/pathology , Lung Injury/virology , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/blood , SARS-CoV-2 , Seroconversion , Viral Load , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL